[1]
|
Studying a time‐fractional moving boundary diffusion model of solvent through a glassy polymer: A computational approach
International Journal of Numerical Modelling: Electronic Networks, Devices and Fields,
2024
DOI:10.1002/jnm.3181
|
|
|
[2]
|
A New Fractional Representation of the Higher Order Taylor Scheme
Computational and Mathematical Methods,
2024
DOI:10.1155/2024/2849717
|
|
|
[3]
|
A New Fractional Representation of the Higher Order Taylor Scheme
Computational and Mathematical Methods,
2024
DOI:10.1155/2024/2849717
|
|
|
[4]
|
Analysis of Caputo Fractional-Order Co-Infection COVID-19 and Influenza SEIR Epidemiology by Laplace Adomian Decomposition Method
Mathematics,
2024
DOI:10.3390/math12121876
|
|
|
[5]
|
A Piecewise Linear Approach for Implementing Fractional-Order Multi-Scroll Chaotic Systems on ARMs and FPGAs
Fractal and Fractional,
2024
DOI:10.3390/fractalfract8070389
|
|
|
[6]
|
Studying a time‐fractional moving boundary diffusion model of solvent through a glassy polymer: A computational approach
International Journal of Numerical Modelling: Electronic Networks, Devices and Fields,
2024
DOI:10.1002/jnm.3181
|
|
|
[7]
|
Pell-Lucas polynomials for numerical treatment of the nonlinear fractional-order Duffing equation
Demonstratio Mathematica,
2023
DOI:10.1515/dema-2022-0220
|
|
|
[8]
|
Pell-Lucas polynomials for numerical treatment of the nonlinear fractional-order Duffing equation
Demonstratio Mathematica,
2023
DOI:10.1515/dema-2022-0220
|
|
|
[9]
|
Effective Optimized Decomposition Algorithms for Solving Nonlinear Fractional Differential Equations
Journal of Computational and Nonlinear Dynamics,
2023
DOI:10.1115/1.4056254
|
|
|
[10]
|
Derivation and implementation a 3–stage fractional Runge-Kutta method for solving initial value problems
INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021,
2023
DOI:10.1063/5.0114601
|
|
|
[11]
|
A Review of the Digital Implementation of Continuous-Time Fractional-Order Chaotic Systems Using FPGAs and Embedded Hardware
Archives of Computational Methods in Engineering,
2023
DOI:10.1007/s11831-022-09824-6
|
|
|
[12]
|
A Numerical Computation for an Impulsive Fractional Differential Equation with a Deviated Argument
Symmetry,
2022
DOI:10.3390/sym14112404
|
|
|
[13]
|
Assorted soliton structures of solutions for fractional nonlinear Schrodinger types evolution equations
Journal of Ocean Engineering and Science,
2022
DOI:10.1016/j.joes.2021.10.006
|
|
|
[14]
|
Novel optical solitons and other wave structures of solutions to the fractional order nonlinear Schrodinger equations
Optical and Quantum Electronics,
2022
DOI:10.1007/s11082-022-03891-6
|
|
|
[15]
|
Applying the Reproducing Kernel Method to Fractional Differential Equations with Periodic Conditions in Hilbert Space
Journal of Mathematics,
2022
DOI:10.1155/2022/6261378
|
|
|
[16]
|
Applying the Reproducing Kernel Method to Fractional Differential Equations with Periodic Conditions in Hilbert Space
Journal of Mathematics,
2022
DOI:10.1155/2022/6261378
|
|
|
[17]
|
Novel and diverse soliton constructions for nonlinear space–time fractional modified Camassa–Holm equation and Schrodinger equation
Optical and Quantum Electronics,
2022
DOI:10.1007/s11082-022-03602-1
|
|
|
[18]
|
A Legendre‐based approach of the optimized decomposition method for solving nonlinear Caputo‐type fractional differential equations
Mathematical Methods in the Applied Sciences,
2022
DOI:10.1002/mma.8237
|
|
|
[19]
|
A variety of solitons on the oceans exposed by the Kadomtsev Petviashvili-modified equal width equation adopting different techniques
Journal of Ocean Engineering and Science,
2022
DOI:10.1016/j.joes.2022.07.001
|
|
|
[20]
|
A novel conformable Laplace transform for conformable fractional Lane–Emden type equations
International Journal of Computer Mathematics,
2022
DOI:10.1080/00207160.2022.2037575
|
|
|
[21]
|
New Soliton Solutions of Time-Fractional Korteweg–de Vries Systems
Universe,
2022
DOI:10.3390/universe8090444
|
|
|
[22]
|
Analytical Approximate Solutions of Nonlinear Fractional-Order Nonhomogeneous Differential Equations
Diyala Journal of Engineering Sciences ,
2022
DOI:10.24237/djes.2022.15310
|
|
|
[23]
|
A novel study of the nonlinear Kadomtsev–Petviashvili-modified equal width equation describing the behavior of solitons
Optical and Quantum Electronics,
2022
DOI:10.1007/s11082-022-04138-0
|
|
|
[24]
|
A Review of the Digital Implementation of Continuous-Time Fractional-Order Chaotic Systems Using FPGAs and Embedded Hardware
Archives of Computational Methods in Engineering,
2022
DOI:10.1007/s11831-022-09824-6
|
|
|
[25]
|
Generalized sine–cosine wavelet method for Caputo–Hadamard fractional differential equations
Mathematical Methods in the Applied Sciences,
2022
DOI:10.1002/mma.8325
|
|
|
[26]
|
Improved Soliton Solutions of Generalized Fifth Order Time-Fractional KdV Models: Laplace Transform with Homotopy Perturbation Algorithm
Universe,
2022
DOI:10.3390/universe8110563
|
|
|
[27]
|
Fractional-Order Electrical Circuit Theory
CPSS Power Electronics Series,
2022
DOI:10.1007/978-981-16-2822-1_1
|
|
|
[28]
|
Improved Soliton Solutions of Generalized Fifth Order Time-Fractional KdV Models: Laplace Transform with Homotopy Perturbation Algorithm
Universe,
2022
DOI:10.3390/universe8110563
|
|
|
[29]
|
New Soliton Solutions of Time-Fractional Korteweg–de Vries Systems
Universe,
2022
DOI:10.3390/universe8090444
|
|
|
[30]
|
A Numerical Computation for an Impulsive Fractional Differential Equation with a Deviated Argument
Symmetry,
2022
DOI:10.3390/sym14112404
|
|
|
[31]
|
New and more fractional soliton solutions related to generalized Davey–Stewartson equation using oblique wave transformation
Modern Physics Letters B,
2021
DOI:10.1142/S0217984921503176
|
|
|
[32]
|
Apposite solutions to fractional nonlinear Schrödinger-type evolution equations occurring in quantum mechanics
Modern Physics Letters B,
2021
DOI:10.1142/S0217984921504704
|
|
|
[33]
|
Wave Structures for Nonlinear Schrodinger Types Fractional Partial Differential Equations Arise in Physical Sciences
Engineering International,
2021
DOI:10.18034/ei.v9i2.560
|
|
|
[34]
|
Numerical Solution of Initial Value Problems of Time-Fractional Order via a Novel Fractional 4-Stage Runge-Kutta Method
2021 7th International Conference on Contemporary Information Technology and Mathematics (ICCITM),
2021
DOI:10.1109/ICCITM53167.2021.9677713
|
|
|
[35]
|
Numerical Comparison of FNVIM and FNHPM for Solving a Certain Type of Nonlinear Caputo Time-Fractional Partial Differential Equations
Annales Mathematicae Silesianae,
2020
DOI:10.2478/amsil-2020-0008
|
|
|
[36]
|
The new solitary wave structures for the (2 + 1)-dimensional time-fractional Schrodinger equation and the space-time nonlinear conformable fractional Bogoyavlenskii equations
Alexandria Engineering Journal,
2020
DOI:10.1016/j.aej.2020.01.054
|
|
|
[37]
|
Numerical Comparison of FNVIM and FNHPM for Solving a Certain Type of Nonlinear Caputo Time-Fractional Partial Differential Equations
Annales Mathematicae Silesianae,
2020
DOI:10.2478/amsil-2020-0008
|
|
|
[38]
|
The new solitary wave structures for the (2 + 1)-dimensional time-fractional Schrodinger equation and the space-time nonlinear conformable fractional Bogoyavlenskii equations
Alexandria Engineering Journal,
2020
DOI:10.1016/j.aej.2020.01.054
|
|
|
[39]
|
Numerical Comparison of FNVIM and FNHPM for Solving a Certain Type of Nonlinear Caputo Time-Fractional Partial Differential Equations
Annales Mathematicae Silesianae,
2020
DOI:10.2478/amsil-2020-0008
|
|
|
[40]
|
The new solitary wave structures for the (2 + 1)-dimensional time-fractional Schrodinger equation and the space-time nonlinear conformable fractional Bogoyavlenskii equations
Alexandria Engineering Journal,
2020
DOI:10.1016/j.aej.2020.01.054
|
|
|
[41]
|
Numerical Comparison of FNVIM and FNHPM for Solving a Certain Type of Nonlinear Caputo Time-Fractional Partial Differential Equations
Annales Mathematicae Silesianae,
2020
DOI:10.2478/amsil-2020-0008
|
|
|