[1]
|
D. Changming, “The Homoclinic Orbits in the Liénard Plane,” Journal of Mathematical Analysis and Applica-tions, Vol. 191, 1995, pp. 26-39.
|
[2]
|
B. Rachid, “Ca-nards Homocliniques,” the 7-th International Colloqium on Differential Equations in Bulgaria, Plovdiv, 1997.
|
[3]
|
M. Hayashi, “A Geometric Condition for the Existence of the Homoclinic Orbits of Liénard Systems,” International Journal of Pure and Applied Mathematics, Vol. 66, No.1, 2011, pp. 53-60.
|
[4]
|
E. Beno?t, “Systèmes Lents-Rapides Dans et Leurs a Canard Orbits,” Asterisque, Vol. 109-110, 1983, pp. 159-191.
|
[5]
|
Z. Zhang, et al., “Qualitative Theory of Differential Equations,” Translate Mathematical Monographs in AMS, Vol. 102, 1992, p. 236.
|
[6]
|
J. Graef, “On the Generalized Liénard Equation with Negative Damping,” Journal of Differential Equations, Vol. 12, 1992, pp. 34-62.
doi:10.1016/0022-0396(72)90004-6
|
[7]
|
M. Hayashi, “On Uniqueness of the Closed Orbit of the Liénard Sys-tem,” Mathematica Japonicae, Vol. 46, No. 3, 1997, pp. 371-376.
|
[8]
|
A. Gasull and A. Guillamon, “Non-Existence of Limit Cycles for Some Predator-Prey Systems,” Proceedings of Equadiff’91, World Scientific, Singapore, 1993, pp. 538-546.
|
[9]
|
M. Hayashi, “Non-Existence of Homoclinic Orbits and Global Asymptotic Stability of FitzHugh-Nagumo System,” Vietnam Journal of Mathematics, Vol. 27, No. 4, 1999, pp. 335-343.
|
[10]
|
J. Sugie, “Non-Existence of Periodic Solutions for the FitzHugh Nerve System,” Quarterly Journal of Applied Mathematics, Vol. 49, 1991, pp. 543-554.
|