Travelling Solitary Wave Solutions to Higher Order Korteweg-de Vries Equation ()
1. Introduction
Nonlinear wave phenomena appear in various scientific and engineering fields [1] [2] [3] [4] , such as fluid mechanics, plasma physics, optical fibers, biology, solid state physics, chemical kinematics, chemical physics and geochemistry. The higher order Korteweg-de Vries equation is one of important equations for description localized structures in the modern physics, such as two-layer fluid [5] , steady-state solitary waves in a fluid [6] , a three-layer fluid with a constant buoyancy frequency in an each layer [7] [8] , which means the investigation of the travelling wave solutions for nonlinear partial differential equations plays an important role. The Korteweg-de Vries (KdV) equation [9] [10] is first used to describe the nonlinear long internal waves in a fluid stratified by both density and current. The higher-order Korteweg-de Vries equation is investigated with different methods [11] [12] [13] , which is written as follows.
(1)
where the subscripts denote the partial derivatives of x and t. The γ, β and α are constant parameters; u represents a real scalar function u(x, t).
2. The Tanh-Function Method
Consider a given evolution equation with independent variables x and t in the form are given as
. (2)
By using the wave variable
and substituting into Equation (2), we obtain the following ordinary differential equation
. (3)
where
denotes the derivative with respect to the same sole variable
.
The fact that the solutions of many nonlinear equations can be expressed as a finite series of tanh-function motivates us to seek for the solutions
(4)
where
is a function about x and t,
are constant parameters. m can be obtained by balancing the derivative term of the highest order with the nonlinear term as the follow
and
Usually m is a positive integer, however, once in a while, the value of m is a negative or a fraction, the other kinds of expression will introduced. In the following, we illustrate the method by using it to solve the higher-order Korteweg-de Vries equations.
3. The Tanh-Function Method Solutions for Higher-Order Korteweg-de Vries Equation
Putting the variable
into Equation (1) and we find
; (5)
which is an ordinary differential equation. By using the above method, m = 2 is obtained by balancing the derivative term of the highest order with the nonlinear term.
(6)
substituting (6) into (5) yields a set of algebraic equations for a0, a1, a2, γ, β and α. Collecting all terms with the same power of
together, equating each coefficient to zero, we obtain a set of simultaneous algebraic equations as follows:
Solving the algebraic equations, we get the results:
1) The first case
,
,
(7)
,
(8)
,
(9)
,
,
(10)
2) The second case
,
,
(11)
,
,
(12)
,
,
(13)
,
,
(14)
Equations (7)-(14) are the solutions in the
form for higher order Korteweg-de Vries Equation (1). The numerical simulations
and
are shown with
,
,
,
, the range of x and t are
and
in Figure 1 and Figure 2, respectively. Simulation
of Equation (11) with
,
,
,
, the range of x and t are
and
, which is shown in Figure 3. Simulation
for Equation (12), with
,
,
,
. The range of x and t are
and
, which is shown in Figure 4. From the figures, we know that the amplitude of the traveling wave solutions changes with time. All figures are smooth and no singularity in the given time and given field. These solutions help us find the peak and the deep location in physics system.
Figure 1. Simulation
of Equation (7) with
,
,
,
. The range of x and t are
and
. The valley appears in the middle.
Figure 2. Simulation
for Equation (8), with
,
,
,
. The range of x and t are
and
. The peak appears in the middle.
Figure 3. Simulation
of Equation (11) with
,
,
,
. The range of x and t are
and
. The jump appears in the middle.
Figure 4. Simulation
for Equation (12), with
,
,
,
. The range of x and t are
and
. The jump appears in the middle.
4. Summary
Some new analytical solutions of the higher-order Korteweg-de Vries Equation (1) are obtained by successfully employing tanh-function method in this paper, which can be employed to discuss some interest physical phenomena, such as two-layer fluid, steady-state solitary waves in a fluid, three-layer fluid with a constant buoyancy frequency in an each layer. This tanh-function method is based on a previous work [14] [15] [16] [17] [18] . It is very interest to find these novel analytical evolution solutions, which is useful in establishing the connection between the longstanding rheological mechanics energy conservation problem and two-layer fluid, steady-state solitary waves in a fluid.