Abstract
Coordinates of the Earth’s pole represent two out of five Earth orientation parameters describing Earth’s rotation. They are necessary in transformation between celestial reference frame and terrestrial reference frame and what goes further in precise positioning and navigation, applications in astronomy, communication with outer space objects. Complexity of measuring techniques and data processing involved in the pole coordinates determination make it impossible to obtain them in real-time mode, hence a prediction problem of the polar motion emerges. In this study, geostatistical prediction methods, i. e., simple and ordinary kriging are applied. Millions of predictions have been performed to draw reasonable conclusions on prediction capabilities of applied kriging variants. The study is intended in ultra-short-term prediction (up to 15 days into the future) using the IERS EOP 14 C04 (IAU2000A) and IERS EOP 05 C04 (IAU2000A) series as a reference. Mean absolute prediction errors (for days 1–15) with respect to IERS 14 C04 are ranging 0.66–5.25 mas for PMx and 0.47–3.59 mas for PMy. On the other hand, for IERS 05 C04 the values are 0.60–4.95 mas and 0.44–3.29 mas for PMx and PMy; respectively. The results indicate competitiveness of the introduced methods with existing ones.
Funding source: Akademia Górniczo-Hutnicza im. Stanislawa Staszica
Award Identifier / Grant number: 16.16.150.545
Funding statement: The paper is a result of research on geospatial methods carried out within the statutory research grant no. 16.16.150.545 at the Department of Integrated Geodesy and Cartography, AGH University of Science and Technology, Krakow.
Acknowledgment
The authors are very grateful to M. Kalarus for providing EOP PCC data.
Intermediate results are available at the website accompanied with this article home.agh.edu.pl/mmichalc.
References
[1] Abdelazeem M, Çelik R N, El-Rabbany A. An accurate Kriging-based regional ionospheric model using combined GPS/BeiDou observations. Journal of Applied Geodesy, 2018 12(1), 65–76.10.1515/jag-2017-0023Search in Google Scholar
[2] Al-Shaery A, Lim S, Rizos C. Functional models of ordinary kriging for medium range real-time kinematic positioning based on the Virtual Reference Station technique. In: Proceedings of the ION GNSS+, Portland, OR, USA, 21–24 September 2010, pp. 2513–2521.Search in Google Scholar
[3] Bizouard Ch, Lambert S, Gattano C, Becker O, Richard J.-Y. The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014. Journal of Geodesy, 2019, 93, 621–633.10.1007/s00190-018-1186-3Search in Google Scholar
[4] Dow JM, Neilan RE, Rizos C, The international GNSS Service in a changing landscape of global navigation satellite systems. J Geod, 2009, 83(3–4), 191–198.10.1007/s00190-008-0300-3Search in Google Scholar
[5] Ferrándiz, J.M.; Navarro, J.; Escapa, A.; Getino, J. The Earth Rotation: a Challenging Problem in Mathematics and Physics. Pure and Applied Geophysics, 172, pp. 57–74, 2015.10.1007/s00024-014-0879-7Search in Google Scholar
[6] Hozakowski W. Polar motion prediction by the least-squares collocation method. In: Boucher C, Wilkins GA (eds.), Earth rotation and coordinate reference frames. International Association of Geodesy Symposia, Springer, 1990, 105, 50–57.10.1007/978-1-4684-6399-6_7Search in Google Scholar
[7] Huang Ch, Zhang H, Robeson S. On the Validity of Commonly Used Covariance and Variogram Functions on the Sphere. Mathematical Geosciences. 2011, 43. 721–733.10.1007/s11004-011-9344-7Search in Google Scholar
[8] IERS Annual Report 2018. Edited by Wolfgang R. Dick and Daniela Thaller. International Earth Rotation and Reference Systems Service, Central Bureau. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2020. 207 p., ISBN 978-3-86482-136-3.Search in Google Scholar
[9] IERS Conventions (2010), Petit G and Luzum B (eds.). IERS Technical Note 36, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie. 179 pp., ISBN 3-89888-989-6.Search in Google Scholar
[10] Jordan S K. Self-Consistent statistical model for the gravity anomaly, vertical deflections, and undulation of the geoid. J. Geophys. Res., 1972, 77(20), 3660–3670.10.1029/JB077i020p03660Search in Google Scholar
[11] Jovanović B. An approximation of tabulated function. Publications De L’Institut Mathematique, 1987, 41(55), 143–148.Search in Google Scholar
[12] Kalarus M, Schuh H, Kosek W, Akyilmaz O, Bizouard Ch, Gambis D, Gross, Jovanović B R, Kumakshev S, Kutterer H, Mendes Cerveira P J, Pasynok S, Zotov L. Achievements of the Earth Orientation Parameters prediction comparison campaign. Journal of Geodesy, 2010, 84, 587–596.10.1007/s00190-010-0387-1Search in Google Scholar
[13] Kosek W, Kalarus M, Niedzielski T. Forecasting Of the Earth Orientation Parameters – Comparison of Different Algorithms, Journées Systèmes de Référence Spatio-temporels 2007, Observatoire de Paris, 17–19 September 2007.Search in Google Scholar
[14] Lei Y, Cai H, Zhao D. Improvement of the prediction accuracy of polar motion using empirical mode decomposition. Geodesy and Geodynamics, 2017, 8(2), 141–146.10.1016/j.geog.2016.09.007Search in Google Scholar
[15] Ligas M, Kulczycki M. Kriging and moving window kriging on a sphere in geometric (GNSS/levelling) geoid modelling, Survey Review, 2018, 50(359), 155–162.10.1080/00396265.2016.1247131Search in Google Scholar
[16] Ligas M, Szombara S. Geostatistical prediction of a local geometric geoid – kriging and cokriging with the use of EGM2008 geopotential model. Studia Geophysica et Geodaetica, 2018, 62, 187–205.10.1007/s11200-017-0713-7Search in Google Scholar
[17] Modiri S, Belda S, Heinkelmann R, Hoseini M, Ferrándiz J M, Schuh H. Polar motion prediction using the combination of SSA and Copula based analysis. Earth, Planets and Space, 2018, 70, 115.10.1186/s40623-018-0888-3Search in Google Scholar PubMed PubMed Central
[18] Modiri S, Belda S, Heinkelmann R, Hoseini M, Ferrándiz J M, Schuh H. A new hybrid method to improve the ultra-short-term prediction of LOD, Journal of Geodesy 94(2), 2020.10.1007/s00190-020-01354-ySearch in Google Scholar PubMed PubMed Central
[19] Moritz H, Mueller I: Earth Rotation: Theory and Observation. Ungar Pub., 1988.Search in Google Scholar
[20] Okhotnikov G, Golyandina N. EOP Time Series Prediction Using Singular Spectrum Analysis, In: Corpetti T, Ienco D, Interdonato R, et al. (eds.), Proceedings of MACLEAN: MAChine learning for EArth observation workshop, RWTH Aahen University, CEUR Workshop Proceedings, 2019.Search in Google Scholar
[21] Reguzzoni M, Sansò F, Venuti G. The theory of general kriging, with applications to the determination of a local geoid. Geophysical Journal International, 2005, 162, 303–314.10.1111/j.1365-246X.2005.02662.xSearch in Google Scholar
[22] Schuh H, Ulrich M, Egger D, Müller J, Schwegmann W. Prediction of Earth orientation parameters by artificial neural networks, Journal of Geodesy. 2002, 76, 247–258.10.1007/s00190-001-0242-5Search in Google Scholar
[23] Stein L M. Interpolation of spatial data – some theory for kriging, Springer, New York, 1999.10.1007/978-1-4612-1494-6Search in Google Scholar
[24] Xu X, Zhou Y, EOP prediction using least square fitting and autoregressive filter over optimized data intervals, Advances in Space Research, 2015, 56(10), 2248–2253.10.1016/j.asr.2015.08.007Search in Google Scholar
[25] Ye F, Yuan Y, Deng Z, Improved Ultra-Rapid UT1-UTC Determination and Its Preliminary Impact on GNSS Satellite Ultra-Rapid Orbit Determination, Remote Sensing, 2020, 12, 3584.10.3390/rs12213584Search in Google Scholar
[26] Zajdel, R., Sośnica, K., Bury, G., Dach R., Prange L., System-specific systematic errors in earth rotation parameters derived from GPS, GLONASS, and Galileo. GPS Solut, 2020 24, 74.10.1007/s10291-020-00989-wSearch in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston