横画面推奨!
モバイル機器の場合、数式が見切れる場合があります。
ラベル 演算...部分分数分解 の投稿を表示しています。 すべての投稿を表示
ラベル 演算...部分分数分解 の投稿を表示しています。 すべての投稿を表示

2022年12月15日

分数式を部分分数分解する(2)

「次の分数式を部分分数分解せよ。ただし、分解後の分数式の分子の次数は$0$になるようにすること。

(1)$\large\dfrac{4x-9}{2x^2-x-15}$

(2)$\large-\dfrac{4x}{(x+3)^2(3x+9)}$

(3)$\large\dfrac{x^3-4x^2-3x+2}{x^2+4x-5}$」

このような問題はどのように解けばよいのでしょうか?

Share:

2022年12月9日

分数式を部分分数分解する

「以下の分数式を部分分数分解せよ。ただし、分子の次数は0になるようにすること。

(1)$\large\dfrac{3}{(x+2)(x-5)}$

(2)$\large\dfrac{2x^2-3x+7}{(x+1)^3}$

(3)$\large\dfrac{x+4}{x(x-2)^2}$」

このような問題はどのように解けばよいのでしょうか?

Share:

2022年4月4日

部分分数分解する方法

\begin{equation}\frac{1}{(x+2)(x-3)}=\frac{A}{x+2}+\frac{B}{x-3}\end{equation}
「上の式が成り立つような$A,B$の値を求めよ。」
Share:
◎Amazonのアソシエイトとして、当サイト「数学について考えてみる」は適格販売により収入を得ています。
Powered by Blogger.

PR

ブログランキング・にほんブログ村へ
 
  翻译: