Filters
Results 1 - 10 of 41
Results 1 - 10 of 41.
Search took: 0.02 seconds
Sort by: date | relevance |
Aldrovandi, R.
Instituto de Fisica Teorica, Sao Paulo (Brazil)1975
Instituto de Fisica Teorica, Sao Paulo (Brazil)1975
AbstractAbstract
[en] In a very simplified, descriptive way, the main trends of phenomenological cosmology are reviewed. A sketchy view of the fashionable Standard Model(1,2) is considered preliminarly its most pretentious variant, the Symmetric Model, is then introduced
[pt]
Revisa-se numa maneira descritiva, bastante simplificada a principal orientacao da cosmologia fenomenologica. Considera-se preliminarmente uma visao esbocada do modelo padrao em voga e entao procede-se a introducao de sua variante mais pretenciosa, o modelo simetricoOriginal Title
Estagios mais proximos do universo
Primary Subject
Source
Apr 1975; 20 p
Record Type
Report
Report Number
Country of publication
LanguageLanguage
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Aldrovandi, R.; Pereira, J.G.
Instituto de Fisica Teorica, Sao Paulo (Brazil)1985
Instituto de Fisica Teorica, Sao Paulo (Brazil)1985
AbstractAbstract
[en] A natural candidate model for a gauge theory for the Poincare group is discussed. It satisfies the usual electric-magnetic symmetry of gauge models and is a contraction of a gauge model for the De Sitter group. Its field equations are just the Yang-Mills equations for the Poincare group. It is shown that these equations do not follow from a Lagrangean. (Author)
[pt]
Discute-se um modelo, candidato natural para uma teoria de calibre para o grupo de Poincare. Ele satisfaz a simetria usual eletrica-magnetica dos modelos de calibre e e uma contracao de um modelo de calibre para o grupo de De Sitter. Suas equacoes de campo sao justamente as equacoes de Yang-Mills para o grupo de Poincare. Mostra-se que essas equacoes nao saem de uma lagrangeana. (L.C.)Primary Subject
Source
1985; 38 p
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Aldrovandi, R.
Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)1990
Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)1990
AbstractAbstract
[en] Identical impenetrable particles in a 2-dimensional configuration space obey braid statistics, intermediate between bosons and fermions. This statistics, based on braid groups, is introduced as a generalization of the usual statistics founded on the symmetric groups. The main properties of an ideal gas of such particles are presented. They do interpolate the properties of bosons and fermions but include classical particles as a special case. Restriction to 2 dimensions precludes lambda points but originates a peculiar symmetry, responsible in particular for the identity of boson and fermion specific heats. (author)
Primary Subject
Source
1990; 45 p
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Aldrovandi, R.
Instituto de Fisica Teorica, Sao Paulo (Brazil)1986
Instituto de Fisica Teorica, Sao Paulo (Brazil)1986
AbstractAbstract
[en] A short review on theories for the gravitational interactions is presented with emphasis in the gauge-like models.(L.C.)
[pt]
Uma curta resenha sobre teorias para as interacoes gravitacionais e apresentafa com enfase nos modelos do tipo calibre.(L.C.)Original Title
Teorias para a interacao gravitacional
Primary Subject
Source
1986; 14 p; 7. National Meeting on Particles and Fields Physics; Caxambu, MG (Brazil); Sep 1986
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
LanguageLanguage
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Aldrovandi, R.
Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)1993
Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)1993
AbstractAbstract
[en] Quantum phase space is given a description which entirely parallels the usual presentation of Classical Phase Space. A particular Schwinger unitary operator basis, in which the expansion of each operator is its own Weyl expression, is specially convenient for the purpose. The quantum Hamiltonian structure obtains from the classical structure by the conversion of the classical pointwise product of dynamical quantities into the noncommutative star product of Wigner functions. The main qualitative difference in the general structure is that, in the quantum case, the inverse symplectic matrix is not simply antisymmetric. This difference leads to the presence of braiding in the backstage of Quantum Mechanics. (author)
Primary Subject
Source
Jan 1993; 52 p
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Aldrovandi, R.; Goto, M.
Instituto de Fisica Teorica, Sao Paulo (Brazil)1977
Instituto de Fisica Teorica, Sao Paulo (Brazil)1977
AbstractAbstract
[en] A statistical analysis is made of the randon geometry of an early symmetric matter-antimatter universe model. Such a model is shown to determine the total number of the largest agglomerations in the universe, as well as of some special configurations. Constraints on the time development of the protoagglomerations are also obtained
Primary Subject
Source
May 1977; 22 p
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Aldrovandi, R.; Galetti, D.
Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)1989
Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)1989
AbstractAbstract
[en] The space of labels characterizating the elements of Schwinger's basis for unitary quantum operators is endowed with a structure of symplectic type. This structure is embodied in a certain algebric cocycle, whose main features are inherited by the symplectic form of classical phase space. In consequence, the label space may be taken as the Quantum Phase Space Space: it plays, in the quantum case, the same role played by phase in classical mechanics, some differences coming inevitably from its non-linear character. (author)
[pt]
O espaco de indices caracterizando os elementos da base de Schwinger para operadores quanticos unitarios e dotado de uma estrutura de tipo simpletico. Esta estrutura e embutida em um certo cocicle algebrico, cujas principais caracteristicas sao inerentes a forma simpletica do espaco de fase classico. Em consequencia, o espaco de indices pode ser tomado como o espaco de fase quantico. Isto representa no caso quantico, a mesma funcao representada pelo espaco de fase na mecanica classica, algumas diferencas resultam inevitalmente a partir de seu carater nao linear. (M.C.K.)Primary Subject
Source
1989; 44 p
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Aldrovandi, R.; Pereira, J.G.
Instituto de Fisica Teorica, Sao Paulo (Brazil)1986
Instituto de Fisica Teorica, Sao Paulo (Brazil)1986
AbstractAbstract
[en] A gauge model based on the Yang-Mills equations for the Poincare group cannot be consistently quantized, at least in a perturbative approach. The problem is related to the absence of a Lagrangian. Adding the counterterms required by consistency and renormalizability turns the model into a gauge theory for a de Sitter group. (Author)
[pt]
Um modelo de calibre baseado nas equacoes de Yang-Mills para o grupo de Poincare, nao pode ser quantizado coerentemente, pelo menos numa abordagem perturbativa. O problema esta relacionado a ausencia de uma Lagrangiana. A adicao de contra-termos exigida pela coerencia e renormalizabilidade transforma o modelo em uma teoria de calibre para um grupo de de Sitter. (S.D.)Primary Subject
Source
1986; 10 p
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Aldrovandi, R.; Stedile, E.
Instituto de Fisica Teorica, Sao Paulo (Brazil)
Instituto de Fisica Teorica, Sao Paulo (Brazil)
AbstractAbstract
[en] Gauge theories for non-semisimple groups are examined. A theory for the Poincare group with all the essential characteristics of a Yang-Mills theory possesses necessarily extra equations. Inonu-Wigner contractions of gauge theories are introduced which provide a Lagrangian formalism, equivalent to a lagrangian de Sitter theory supplemented by weak constraints. (Author)
[pt]
Examinam-se teorias de gauge para grupos nao-semi-simples. Uma teoria para o grupo de Poincare com todas as caracteristicas essenciais de uma teoria de Yang-Mills possue necessariamente equacoes extras. Introduzem-se contracoes de Inonu-Wigner de teorias de gauge que fornecem um formalismo lagrangreano, equivalente a teoria de Sitter lagrangeana acrescentada por vinculos fracos. (L.C.)Primary Subject
Source
nd; 35 p
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Aldrovandi, R.; Saeger, L.A.
Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)1996
Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)1996
AbstractAbstract
[en] The Weyl-Wigner correspondence prescription, which makes large use of Fourier duality, is reexamined from the point of view of Kac algebras, the most general background for non-commutative Fourier analysis allowing for that property. It is shown how the standard Kac structure has to be extended in order to accommodate the physical requirements. An Abelian and a symmetric projective Kac algebras are shown to provide, in close parallel to the standard case, a new dual framework and a well-defined notion of projective Fourier duality for the group of translations on the plane. The Weyl formula arises naturally as an irreducible component of the duality mapping between these projective algebras. (author). 29 refs
Primary Subject
Source
Aug 1996; 46 p
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
1 | 2 | 3 | Next |